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of  the other signs. Maximizat ion  of  (IV-7) over all the 
possible values of  (sl . . .  s~0), assuming /(" to have a 
fixed value, will give the most probable  set of  these 
signs. (IV-7) gives rise to expression (23); in fact, since 
B1 does not depend on any sign, it clearly follows that:  

Max P(sl . . .  s ~ ) = M a x  Bz(sl . . .  sp) . (IV-8) 

Remember ing  the last equation in (IV-5), we may 
easily see that  (23) and (IV-8) are equivalent. 
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The geometric conditions under which intrinsic multiple diffraction can occur have been examined for 
the single-crystal orienter technique in the equatorial plane, and for the precession camera technique. 
The conditions for the single-crystal orienter are the same that have already been found for normal 
beam and equi-inclination techniques by Zachariasen, and in part by Fankuchen and co-workers. If a 
crystal is oriented with a symmetry axis parallel to, or a symmetry plane normal to, the rotation a~is 
(~ axis) then intrinsic multiple diffraction will occur. The consequences of the conditions are different, 
however. For the normal beam and equi-inclination cases reflections on nonzero layer lines will be 
recorded under conditions of double and triple diffraction, respectively, and the situation is both in- 
trinsic and systematic. For the single-crystal orienter the situation is intrinsic but not always systematic. 
Depending both on the crystal symmetry and the indices of the reflections the multiplicities may be 
triple, quintuple, septuple, 11-fold, or 15-fold. For the precession camera the situation is not intrinsic. 
However, if a crystal is again oriented with a symmetry axis parallel to, or a symmetry plane normal 
to, the rotation axis (in this case the spindle axis) a systematic case can be created. If the precession 
angle # is set at # = cos-l(d*/2), where d* is the reciprocal lattice spacing from the zero level to an upper 
level, then all reflections on the zero level are recorded under conditions of triple diffraction. The 
possibilities for nonsystematic cases with the precession camera are more interesting. The conditions 
for multiple diffraction of selected groups of zero level reflections can be created or avoided at will by 
the choice of 2, regardless of crystal symmetry or crystal orientation. In principle this should permit 
direct observation of the effects of multiple diffraction on intensities. 

Zachar iasen (1965) has recently emphasized that  most  
intensity measurements  reported in the literature, and 
used for structure determination,  have been made under 
condit ions of multiple diffraction. For  normal  beam 
techniques (rotating crystal, oscillating crystal, or Weis- 
senberg) all reflections on nonzero layer lines are ob- 
tained under  condit ions of  double diffraction if  a cry- 
stal is oriented with a symmetry axis parallel to, or a 
symmetry  plane normal  to, the rotation axis*. For  the 

* Depending on the Bravais lattice there are two possibili- 
ties: Either all reflections on every nonzero layer line, or all 
reflections on every third layer line, will be subject to double 
diffraction. 

equi-inclination Weissenberg technique all reflections 
on nonzero layer lines are obtained under  conditions 
of  triple diffraction if  a crystal is oriented as above. t  
Zachariasen also illustrated two special cases where 
certain zero layer line reflections are subject to triple 
or quintuple diffraction when a fourfold or sixfold 
symmetry axis is normal  to the rotat ion axis. In ad- 
dition Zachariasen solved the intensity equations for 
double, triple, and quintuple diffraction for a plane, 

I" Depending on the Bravais lattice there are three possibili- 
ties: All reflections either on every nonzero layer line, or on 
every second layer line, or on every third layer line, will be 
subject to triple diffraction. 
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parallel plate crystal with a secondary extinction coef- 
ficient of 200 and obtained numerical values of the 
multiple diffraction corrections. The results indicate 
that strong reflections are weakened, and weak reflec- 
tions are strengthened by multiple diffraction, the 
magnitude of the effects increasing with increase in 
multiplicity of diffraction. Systematic multiple diffrac- 
tion in the equi-inclination case was recognized earlier by 
Fankuchen (Fankuchen & Williamson, 1956; Yakel & 
Fankuchen, 1962). However, the full significance of the 
effect and its widespread occurrence in almost every 
technique did not become clear to me until the appear- 
ance of Zachariasen's work. It is the purpose of the 
present paper to indicate the conditions under which 
multiple diffraction occurs for the single-crystal ori- 
enter technique, where all measurements are made in 
the equatorial plane, and for the precession camera 
technique. 

In the discussion that follows the terms intrinsic and 
systematic will be applied to multiple diffraction. If, 
with a given crystal symmetry and orientation, and a 
given diffraction technique, it is impossible to avoid 
conditions of multiple diffraction for at least a portion 
of the reflections, these reflections and the technique 
will be said to be subject to intrinsic multiple diffrac- 
tion. If an entire class of reflections (for example all 
the reflections on a given layer line) is recorded under 
conditions of multiple diffraction, and the multiplicity 
of diffraction is uniform throughout the class, then the 
reflections and the technique will be said to be subject 
to systematic multiple diffraction. These definitions are 
introduced because systematic multiple diffraction may 
not be intrinsic, and intrinsic multiple diffraction may 
not be systematic. For the normal beam and equi- 
inclination cases, the multiple diffraction is both in- 
trinsic and systematic. For the single-crystal orienter 
the case will prove to be intrinsic but not always syste- 
matic. For the precession camera there is one case 
which is systematic but not intrinsic, and an entire class 
of cases which are neither systematic nor intrinsic. 

Single-crystal orienter technique 

Consider a diffractometer and single-crystal orienter 
which are arranged with the source and detector in the 
horizontal plane. When the crystal and detector are 
adjusted to record a reflection a reciprocal lattice point 
lies somewhere on the horizontal equator of the sphere. 
Let a vertical plane pass through the lattice point and 
the origin of the reciprocal lattice. The intersection of 
the vertical plane and the sphere defines a vertical circle 
of reflection. If the crystal is so oriented that a vertical 
reciprocal lattice plane coincides with the vertical circle 
of reflection then the possibility of intrinsic multiple 
diffraction exists. 

The conditions for intrinsic multiple diffraction with 
the single-crystal orienter can be found by considering 
three questions: 

1. Is there a reciprocal lattice plane coincident with 
the vertical circle of reflection? 

2. If so what is the symmetry of the reciprocal lattice 
plane? 

3. What systematic effects are caused by the reciprocal 
lattice plane symmetry? 

The answer to the first question is straightforward. 
If the crystal is oriented with a reciprocal lattice vector 
along the rotation axis (the rp axis of the single-crystal 
orienter) there will be a reciprocal lattice plane coin- 
cident with the vertical circle of reflection. 

Six alternatives occur for the second question. There 
are five types of reciprocal lattice plane which corres- 
pond to true plane lattices: oblique, rectangular, cent- 
ered rectangular, hexagonal, and square. For our pur- 
poses it is necessary to add a sixth type which will be 
called rhombohedral rectangular. Plane lattices of this 
triply primitive rectangular type will be encountered 
when a cubic crystal is oriented with a cube diagonal 
along the rotation axis, or when a rhombohedral cry- 
stal is oriented with its trigonal axis along the rotation 
axis. 

In discussing the third question an unconventional 
nomenclature will be used. All points in a reciprocal 
lattice plane will be defined in terms of a pair of recipro- 
cal lattice plane vectors, 91, ~2. The reflections will be 
identified in terms of indices Pl, p2 such that the vector 
P~x +Pz~'z extends from the origin of the reciprocal lat- 
tice plane to the reflection pl, p2. In general the recipro- 
cal lattice plane vectors ~t, 92 will represent compound 
translations in the three-dimensional reciprocal lattice, 
such as [224] or [220]. The reciprocal lattice plane de- 
finitions in terms of ~1, ~z are: 
1. Oblique: ]val ~ l~2l, h'~2¢0 
2. Rectangular: Ihl ¢ I~zl, h '~z=0  
3. Centered rectangular: as for rectangular plus an ad- 

ditional lattice point at ½(~1 + ~z) from any given lat- 
tice point. Half the reflections have pa, P2 integral, 
half have p~, p2 nonintegral. 

4. Rhombohedral rectangular: as for rectangular plus 
two additional lattice points at ½(~a + ~2), ~(91 -{- ~2) or 
at --½(~ + ~2), -- ~-(~x + ~z) from any given lattice point. 
One-third of the reflections have Pl, p2 integral, two- 
thirds have px, P2 nonintegral. 

5. Hexagonal: I h l = l h l ,  h.h=(l/3/2)I~11 Ihl 
6. Square: Ihl=l~21, h . h = 0  

A convenient graphical construction for studying 
multiple diffraction on reciprocal lattice planes is in- 
dicated in Fig. 1. The conditions for reflection of 1,2 
(or 2,1) and the second, third and fourth order on a 
square lattice are illustrated. The straight line repre- 
sents a projection of the equatorial plane of the sphere 
which is normal to the figure. Four circles of reflection 
are shown which will occur in succession when the 
spectrometer is adjusted to record the 1,2; 2,4; 3,6; 
and 4,8 reflections. It is apparent that for the 1,2 re- 
flection the first and third orders will be subject to 
triple diffraction, while the second and fourth orders 
will be subject to septuple diffraction. This simple type 
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of construction can be used for any reflection on any 
type of reciprocal lattice plane. For all the reciprocal 
lattice planes except the square lattice the results can 
be generalized into a set of rules or conditions as sum- 
marized in Table 1. For the square lattice a great 
variety of effects are possible which have not been re- 
duced to a set of rules. In Table 2 the effects on a square 
lattice are summarized for all reflections up to the type 
n.7, n'6. In this table n stands for the order of the re- 
flection. Thus for the first order of 2,1 which is illus- 
trated in Fig. 1 there is triple diffraction with 2,0 and 

Table 1. Intrinsic multiple diffraction effects encountered 
with the single-crystal orienter 

Type of 
reciprocal Intrinsic effects in terms of reciprocal 

lattice plane lattice plane indices pl, P2 

Oblique Single diffraction for all reflections 

Triple diffraction for reflections with 
Rectangular Pl,P2 y~ 0 

Single diffraction for reflections with 
Pl or p 2 : 0  

Centered Triple diffraction for reflections with 
rectangular Pl, PE integral and =~0 
and Single diffraction for reflections with 
rhombohedral  Pl, p2 integral and p l or P2 = 0 
rectangular Single diffraction for reflections with 

Pl, P2 nonintegral 

I Quintuple diffraction for even orders with 
Pl or p2=O, or Pl=P2 
l l - fold  diffraction for even orders with 

Hexagonal Pl, P25 ~0 and Pl 4P2 
Single diffraction for odd orders with 
Pl or p2----0, or Pl =P2 
Triple diffraction for odd orders with 
Pl, p 2 ¢ 0  and Pl ¢P2 

Triple, septuple, l l-fold,  and 15-fold 
diffraction have been noted for even orders 

Square Single, triple, quintuple, septuple, and 
11-fold diffraction have been noted for odd 
order 

Fig. 1. Graphical construction for multiple diffraction on plane 
lattices. The 1,2 reflection on a square lattice and the second, 
third, and fourth orders are illustrated. 

0,1. For the second order there is septuple diffraction 
with 4,0; 0,2; 3,T; 1,i; 1,3; and 3,3. For the third order 
there is triple diffraction with 6,0 and 0,3. It would 
appear that the effects can be summarized for the odd 
and even orders. However, this has not been proved 
and the orders which were actually investigated are 
indicated in a footnote to Table 2. The same statement 
can be made for the single-crystal orienter that has 
already been found for normal beam and equi-inclin- 
ation techniques. If a crystal is oriented with a sym- 
metry axis parallel to, or a symmetry plane normal to, 
the rotation axis (~0 axis) then intrinsic multiple extinc- 
tion will occur. 

Zero level precession camera technique 

Each of the ordinary photographic techniques has a 
strong analogy to a spectrometer technique. The nor- 
mal beam photographic methods (rotation, oscillation, 
or Weissenberg) have their analogy in the normal beam 
spectrometer technique and the conditions for system- 
atic multiple extinction are identical. The same is true 
for the equi-inclination Weissenberg method in both 
the photographic and spectrometer techniques. There 
is a limited analogy between zero level precession 
photography and spectrometry with the single-crystal 
orienter. The exploration of reciprocal space will be 
carried out in an equivalent manner if a crystal is 
mounted with a given reciprocal lattice vector along 
the spindle axis on the precession camera, and along 
the ~0 axis on the single-crystal orienter, and if the 
photographic exploration is restricted to zero level 
photographs. However, there are fundamental differen- 
ces with respect to intrinsic multiple diffraction. To 
record a reflection with the spectrometer a circle of 
reflection must be adjusted so that a diameter of the 
circle is coincident with a reciprocal lattice point. As 
indicated in the previous section multiple diffraction 
is inevitable for symmetrical situations. In the preces- 
sion method a circle of reflection and the lattice level 
to be recorded are always coincident. The precession 
mechanism causes the circle of reflections to traverse 
a circular orbit in the plane of the lattice level. On a 
zero level the center of the orbit is at the origin and the 
radius of the orbit is equal to the radius of the circle 
of reflection. All points on the zero level which lie inside 
a limiting circle whose radius is equal to the diameter 
of the circle of reflection will come into reflecting pos- 
ition twice during one traverse of the circular orbit. 
The radius of the circle of diffraction can be chosen at 
will. Therefore one can always avoid multiple diffrac- 
tion, regardless of the plane lattice symmetry. Conver- 
sely, one can always deliberately cause any given reflec- 
tion to undergo some type of multiple diffraction re- 
gardless of the plane lattice symmetry. 

If the reciprocal lattice vectors are expressed in di- 
mensionless units such that the radius of the sphere of 
reflection is unity then the radius of the circle of reflec- 
tion is given by sin 12, where # is the precession angle. 

A C 1 9 - 6  
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T a b l e  2 .  Intrinsic multiple diffraction effects 
encountered on square reciprocal lattice planes with the single-crystal orienter* 

R e f l e c t i o n s  

n ' l , n ' O  

O d d  A d d i t i o n a l  E v e n  A d d i t i o n a l  
o r d e r s  r e f l ec t ions  o r d e r s  r e f l ec t ions  

Single  T r i p l e  n • 1/2, n • 1/2 
d i f f r ac t i on  d i f f r a c t i o n  n • 1/2, n • ]./2 

n • 1, n • I T r i p l e  n • 1, n • 0 T r i p l e  
d i f f r a c t i o n  n • 0, ii • 1 d i f f r ac t i on  

n "  2, n "  1 T r i p l e  n "  2, n "  0 S e p t u p l ¢  n -  3/z, n. i/z 
diffraction n, 0, n,  1 diffraction . .  1/2, . .  I/2 

17" 1/2, n ' 3 / 2  

.'3/2, n.3/2 

n • 3, n • 1 S e p t u p l e  
d i f f r ac t i on  

n 3, n 0 
n 2, n I 
n 1, n I 
n 0, n 1 
n 1, n 2 
n 2, n 2 

S e p t u p l e  
d i f f r ac t i on  

n • 3, n • 2 T r i p l e  n • 3, n • 0 S e p t u p l e  
d i f f r ac t ion  n .  0, n • 2 d i f f r ac t i on  

n • 4, n • 1 T r i p l e  n • 4, n • 1 S e p t u p l e  
d i f f r ac t i on  n • 0, n • 1 d i f f r ac t ion  

n ' 4 ,  n - 0  
n . 2 ,  n . I  
n . 0 ,  n - 3  
n ' 2 ,  n . 4  

n .  4, n • 3 Q u i n t u p l e  
d i f f r ac t ion  

S e p t u p l e  
d i f f r ac t ion  

,1" 5/2, n "  i / 2  
n • 1/2, . ' I / 2  
n • 1/2, . ' 5 / 2  
! I .  5/2, n ' 5 / 2  

n . 5 / 2 ,  n ' 3 / 2  
1 l - 3 / 2 ,  n . 3 / 2  
n ' 3 / 2 ,  n ' 5 / 2  
n "  5/2, ,7" 5/2 

n . 9 / 2 ,  n ' 3 / 2  
. . I / 2 ,  n . 3 / 2  

n .  5, n "  1 S e p t u p l e  
d i f f r ac t ion  

5, // 
3, n 
2, n 
0, n 
2, n 
3, n 

S e p t u p l e  
d i f f r ac t ion  

n • 5, n "  2 T r ip l e  
d i f f r ac t ion  

n .  5, n .  3 S e p t u p l e  
d i f f r ac t ion  

n • 5, n • 0 
n ' 0 ,  n ' 2  

n 5, n 0 
n 4, n I 
n 1, n ]. 
n 0, n 3 
n 1, n 4 
n 4 ,  n 4  

S e p t u p l e  
d i f f r ac t i on  

S e p t u p l e  
d i f f r ac t ion  

n • 5, n • 4 T r i p l e  n • 5, n • 0 S e p t u p l e  
d i f f r ac t ion  n • 0, n .  4 d i f f r ac t i on  

n • 6, n .  1 T r i p l e  n • 6, n • 0 S e p t u p l e  
d i f f r ac t ion  n • 0, n .  1 d i f f r ac t ion  

n - 6, n • 5 T r ip l e  n • 6, n • 0 S e p t u p l e  
d i f f r ac t ion  n • 0, n • 5 d i f f r ac t ion  

n . 7 / 2 ,  n ' 3 / 2  
n ' 3 / 2 ,  n ' 3 / 2  
n - 3 / 2 ,  n . 7 / 2  
n ' 7 / 2 ,  n . 7 / 2  

n . 9 / 2 ,  n ' i / 2  
n .  1/2, n .  ]./2 
n ' l / 2 ,  n ' 9 /2  
n "  9/2, n - 9 / 2  

n . 7 / 2 ,  n . 3 / 2  
n ' 5 / 2 ,  n . 3 / 2  
n . 5 / 2 ,  n . 7 / 2  
n . 7 / 2 ,  n . 7 / 2  

n -  11/2,  n .  ]'/2 
. ' 1 / 2 ,  n - l / 2  
n ' 1 / 2 ,  n - 1 1 / 2  
n "  11/2, n "  11/2 
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Table 2 (cont.) 

Ref l ec t ions  

n . 7 ,  n . 1  

O d d  
o r de r s  

11-fold 
d i f f r ac t i on  

A d d i t i o n a l  
re f lec t ions  

n 7, n 0 
n 6 ,  n 2  
n 4 ,  n 3  
n 3 ,  n ~  
n 1, n I 
n 0, n 1 
n 1, n 3 
n 3, n 4 
n 4, n 4 
n 6 ,  n 3  

E v e n  
o rde r s  

11-fo ld  
d i f f r ac t ion  

A d d i t i o n a l  
re f lec t ions  

n "  7, n "  2 T r i p l e  
d i f f r ac t ion  

n • 7, n • 3 S e p t u p l e  
d i f f r ac t ion  

n . 7 ,  n 
n . 0 ,  r/ 

" 0  
. 2  

n 7, n 0 
n 5, n 2 
n 2 ,  n ]  
n 0, n 3 
n 2, n 5 
n 5, n 5 

S e p t u p l e  
d i f f r ac t i on  

S e p t u p l e  
d i f f r ac t i on  

n . 9 / 2 ,  n . 3 / 2  
n . 5 / 2 ,  n ' 3 / 2  
n . 5 / 2 ,  n ' 9 / 2  
n ' 9 / 2 ,  n - 9 / 2  

n • 7, n • 4 T r i p l e  n • 7, n • 0 11-fo ld  
d i f f r ac t ion  n • 0, n • 4 d i f f r ac t ion  

n "  7, n .  5 S e p t u p l e  
d i f f r ac t ion  

n 7, n 0 
n 6, n i 
n 1, n i 
n 0, n 5 
n 1, n 6 
n 6, n 6 

S e p t u p l e  
d i f f r ac t ion  

n 15/2, n 5/2 
n 15/2, n 3/2 
n 11/2, n 3/2 
n 3/2, n 3/2 
n I /2 ,  n 3/2 
n I /2 ,  n 5/2 
n 3/2, n 11/2 
n l l / 2 ,  n 11/2 

n • 7, n • 6 S e p t u p l e  
d i f f r ac t ion  

8 , / /  
8, n 
7, n 
]', n 
I ,  n 
O, n 

15-fold  
d i f f r ac t ion  

n 13/2, n i /1  
n 9/2, n 3/2 
n 5/2, n 3/2 
n 1/2, n I / 2  
n 1/2, n 13/2 
n 5/2, n 15/2 
n 9/2, n 15/2 
n 13/2, n 13/2 

* T h e  n u m b e r  o f  o r d e r s  a c t ua l l y  i nves t iga t ed  by  g r aph i ca l  m e a n s  fo r  the  va r i ous  re f lec t ions  was the  f o l l o w i n g :  

6 o r d e r s  4 o r d e r s  3 o r d e r s  2 o r d e r s  

n . l , n . 0  n . 2 ,  n . 1  n . 3 ,  n ' l ;  All  o t h e r  
n "  1, n .  1 n • 3, n "  2 re f lec t ions  

n . 4 ,  n . 1 ;  
n ' 4 ,  n ' 3  

With an oblique plane lattice any reflection can be 
caused to undergo double diffraction. This is because 
one can always fit a circle to three noncollinear points. 
Consider a lattice point given by the vector P1~1, and 
a second point given by the vector P2~2, the angle 
between them being given by fl < 90 °. If the precession 
angle is set at 

#=sin-l[(lplvll2+ Ip2v2l 2 -  21plOd Ip2v2l cos fl)~/2 sin fl] 

double diffraction will occur at six positions along the 
orbit of the circle of reflection. Six lattice points will 
undergo double diffraction during both passages of the 
circle of reflection" Pl, 0; 0, P2; Pl, P2; Pl, 0; 0, P2; and 
pl, P2. If f l= 90 ° then 

# = sin-l[([ Pl vl[ 2 + [ P29212)'~/2] 

and triple diffraction will occur at four positions along 
the orbit of the circle of reflection. Eight lattice points 

A C 19 - 6* 
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will undergo triple diffraction during one traverse of 
the orbit. Four lattice points will experience two pas- 
sages of the circle of reflection: pl, 0; 0p2; p~, 0; and 
0,/52. Four lattice points will lie on the limiting circle 
and experience a single tangential Fassage of the circle 
of reflection: pl, p2; Pl, p2; fib P.~; and Pl,/52. 

The possibilities for multiple diffraction are greatly 
increased on hexagonal or square plane lattices. A spec- 
tacular possibility on a square lattice will be given as 
an example. Let 

sin #=½1/04Pl)z+(1292)z = t / ~  I~1. 

(This will be recognized from Table 2 as the radius of 
the circle of reflection that would be required on the 
single-crystal orienter to record the second order of 
the n.7, n.6 reflection). Fifteenfold diffraction will occur 
at 16 positions along the orbit of the circle of reflec- 
tion. One hundred twenty-eight lattice points will 
undergo fifteenfold diffraction during one traverse of 
the orbit. One hundred twelve points will experience 
two passages of the circle of reflection. Sixteen points 
will lie on the limiting circle and experience a single 
tangential passage of the circle of reflection. This result 
is readily verified with compasses and square coordi- 
nate paper. 

Unless absorption is negligible the precession camera 
is not well suited for upper level intensity measure- 
ments because of the complexities of the Lorentz-polar- 
ization absorption factor (Burbank & Knox, 1962). 
However, it is of interest to know the conditions under 
which upper level reflections enter into multiple dif- 
fraction with zero level reflections. On the zero level 
multiple diffraction is created by selecting a value of 
# which causes the circle of reflection to pass through 
two or more points on the plane lattice. Although very 
high multiplicities of diffraction can be caused for se- 
lected groups of points the process is not systematic 
in the sense of causing every point on a zero level to 
undergo multiple diffraction. When an upper level and 
a zero level are considered together the situation 
changes. The precession angle can be selected to cause 
a systematic condition in which every point on both 
levels reflects under conditions of multiple diffraction. 
If the crystal is oriented with a symmetry axis parallel 
to, or a symmetry plane normal to, the spindle axis 
then there will be a reciprocal lattice vector which is 
normal to the levels. If the magnitude of this vector 
is d*, and i f#  is set to satisfy the condition 2 cos # = d * ,  
then the situation indicated in Fig. 2 will occur. The 
zero level and the upper level are symmetrically dis- 
posed in the front and back reflection regions. The 
semiapex angle of the diffraction cone for the zero level 
is ~ = #  and the semiapex angle for the upper level is 
180 ° -  ~. The radii of the circles of reflection for each 
level are equal. The precession mechanism causes the 
upper level circle of reflection to traverse a circular 
orbit centered at U, while the zero level circle is travers- 
ing the orbit centered at O. The point U is always in 

U P P E R  ZERO 
~,:.~,, L E V E L  L E V E L  

• ° 

P R E C E 3 S I N G  
AXIS 

Fig.2. Condition for systematic triple diffraction with the 
precession camera technique. 

reflecting position and reflects the X-ray beam at 
20= 180 ° -  2#. Whenever the zero level point situated 
at Pa91 +p2~2 from O comes into reflecting position the 
upper level point situated at plga+p292 from U also 
comes into reflecting position and reflects the beam at 
20= 180 ° . Therefore every point on the zero level will 
reflect under conditions of triple diffraction. For the 
precession technique this upper level is unique in that 
it is the only one that would be free of a 'blind' spot 
at the center of the level if it could be photographed. 
There is a certain parallel between this situation and 
the equi-inclination Weissenberg case. There is also an 
important difference since for the precession technique 
the condition can always be avoided by setting 2 cos 
-C- d*. 

An application of the precession technique 

The zero level precession technique appears to be the 
only method in common usage where multiple diffrac- 
tion can be deliberately and conveniently introduced 
or avoided at will, regardless of  crystal symmetry or 
crystal orientation. This offers an interesting possibility 
for direct experimental observation of the magnitude 
of multiple diffraction effects• A set of three photo- 
graphs would provide the necessary observations. First 
the precession angle # would be chosen to create mul- 
tiple diffraction for certain reflections. Then two ad- 
ditional settings would be used at # + A  and # - A ,  
where A is a small increment that destroys the multiple 
diffraction condition for the selected reflections. The 
average of the intensities observed at # + A  and # - A  
should represent the intensity that would be observed 
at # in the absence of multiple diffraction. 
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